
C# Working with Strings

In programming a String is a specialised type of array. The name String is derived
from a string of characters. A String can be very long or a short as “”. An entire
book could be placed in a single String. This is convenient but of limited use if we
cannot search through the book to find specific parts. As moving through a String to
rearrange the contents or find specific Strings within other Strings are common
programming problems there are a number of useful solutions built into C#.

Comparing Strings

The following code will change the case of a String, the new value is assigned to the
same value as the old String.

String	 data	 =	 "upAndDown";	
data	 =	 data.ToUpper();	
Console.WriteLine(data);	
data	 =	 data.ToLower();	
Console.WriteLine(data);	
	
Strings can be compared to see if they are the same.

String	 otherData	 =	 "upAndDown";	
if(data	 ==	 otherData)	
	 	 	 	 	 	 	 	 	 Console.WriteLine("The	 same");	
else	
	 	 	 	 	 	 	 	 	 Console.WriteLine("Not	 the	 same");	
	
The CompareTo method does the same as == but returns 0, 1 or -1. If the Strings
are the same then 0 is returned. If 1 is returned the String in ()s is before the other
in the alphabet. If -1 is returned it is after the other in the alphabet.

int	 num	 =	 data.CompareTo(otherData);	
if(num	 ==	 0)	
	 	 	 	 	 	 	 	 Console.WriteLine("The	 same	 "	 +	 num);	
else	
	 	 	 	 	 	 	 	 Console.WriteLine("Not	 the	 same	 "	 +	 num);	
	
Searching Strings
	
A String can be searched to see if another String is present within it. The method
Contains	 will return if a char is present within a String.

bool	 num	 =	 data.Contains('p');	

To find the exact position of a char within a String the method IndexOf is used. The
1st position in a String will be 0. This method will not identify subsequent occurances
of the same char within that String

int	 num	 =	 data.IndexOf('p');	
	
There is no specific method to find a String within another String but IndexOfAny will
return the initial position of an array of chars within a String. An array of chars is
good enough to hold a word.

char	 []	 letts	 =	 {'A','n','d'};	
int	 num	 =	 data.IndexOfAny(letts);	
	
To get away with finding multiple occurances of a character or String within another
String we are going to need arrays of chars. Luckily the method ToCharArray will
convert a String to an array of chars. There is no easy way to get the array back
into a String. A for loop would be needed to build up a new String char by char.

String	 lettsAsString	 =	 "And";	
char[]	 letts	 =	 lettsAsString.ToCharArray();	
int	 num	 =	 data.IndexOfAny(letts);	
	
We know that there are 2 n’s in the String variable data but C# can prove this with a
char array and a for loop.

char	 find	 =	 'n';	
int	 count	 =	 0;	
char[]	 words	 =	 data.ToCharArray();	
for	 (int	 x	 =	 0;	 x	 <	 words.Length;	 x++)	
{	
	 	 	 	 	 	 if	 (find	 ==	 words[x])	

	 	 	 	 	 	 	 count++;	
}	
Console.WriteLine("count	 is	 "	 +	 count);	

	
Changing (manipulating) Strings
	
It is not always necessary to spilt a String apart and put it back together to change
the value of a String
	
The length of a String is returned by Length this ignores any whitespace at the
beginning or end of the String.

num	 =	 data.Length;	
	
Remove	 will remove all characters in a String starting at the specified index.

data	 =	 data.Remove(5);	

Replace will work with Strings or char variables and replaces all instances of the
specified variable.

data	 =	 data.Replace("And",	 "OR");	
data	 =	 data.Replace(‘A’,	 ‘O’);	
	
These methods can be used to assign the changed value of 1 String to another

otherData	 =	 data.Replace('A',	 'O');	

As used below the new String has the same length as the 1st but all elements are
replaced by ‘?’.

otherData	 =	 data.Replace("upAndDown",	 "?????????");	
	
Insert	 can be used to insert 1 String into another. This is not a case of overtyping;
the new String is pushed into the old at the specified position and any following
characters are moved along.

otherData	 =	 otherData.Insert(2,	 temp);	
	
To have the new characters overwrite the old the previous character will need to be
removed.

otherData	 =	 otherData.Remove(3,	 1);	
	
In the above example the String variable temp has a length of 1 (it is a 1 letter
String). This is inserted at position 2 into the String otherData. The single letter now
at position 3 of otherData used to be at position 2 and has been passed to Remove.	
	
Hangman example

There are enough code algorithms above to play hangman. The nature of the
methods used means that some swapping between Strings, chars and arrays of
chars is required. The solution outlined below does not include any looping to check
for more than 1 character. It will work with multiple instances of the same letter (as
in initiative which has a good supply of ‘i’s). If this feature were not required the
solution could be simplified.

1. Create 2 Strings, the word to guess and another string that is the same length as

the hidden word but consists of a placeholder character such as ?.
2. Create an array of chars that contains all the letters in the same order as within

the word to be guessed (not the placeholder String).
3. Ask the user for a letter and convert the input to a char.
4. Use a for loop and run through all letters within the char array (see 2)

a. Check if the char entered matches each letter in the array
b. If it does convert the input to a String (or use the initial String input)
c. Use Insert to put that String (letter) in the placeholder word at the correct

position (this will be found from the counter of the for loop, unfortunately
Insert works with Strings not chars).

d. Use Remove to remove the ? that has been moved 1 along by the Insert
method

5. Output the new value of the placeholder String. If a letter has been matched then
the value of that String will have changed.

The following shows some sample output, in this run the letters compared are case
sensitive:

?????????	 is	 now	
Please	 enter	 a	 letter	
n	
2	 letters	 found	
???n????n	 is	 now	
Please	 enter	 a	 letter	
A	
1	 letters	 found	
??An????n	 is	 now	
Please	 enter	 a	 letter	
x	
0	 letters	 found	
??An????n	 is	 now	
Please	 enter	 a	 letter	
	

	

	
	

