Linking Android XML Widgets to Java Code

There are other options for entering text besides the EditText and other actions
besides a Button click. This document will consider the following widgets and how to
interact with them.

e CheckBox

e RadioButton

e Spinner
e Toast
e AlertDialog
These all allow a limited range of input
choices. A Spinner will offer a list to be
M @ 12:52em selected from. A RadioButton allows on 1
[Test Widgets of each set of RadioButtons to be selected.
Check box Is n A CheckBox can be checked or not but

EditTextewghhaj unlike the RadioButton several can be

selected at the same time.

'
The Toast is used for outputting messages

OGood in an alert box for a short period of time. It
is also handy for debugging.

three

The Activity to the left has used a table
layout in xml to organise the widgets and fit
them on the rather small screen real
estate.

The word Is three

The key lines to attach an onClickListener
to a Button and pick up the click in code were:

import android.view.View;
implements View.OnClickListener

bSimple.setOnClickListener (this);

public void onClick (View view)

{
if (bSimple.isPressed())

.
14

The Toast is simple; the class can be accessed and used in 1 line. There is no need
to create an instance of a Toast. The length refers to the time that the Toast is
displayed not how long the message bar is on screen.

Toast.makeText (this, "A message from Button ",
Toast.LENGTH LONG) .show () ;

(® Message

Enter a reply

RN

A message from Button

The AlertDialog places a message in a box but unlike the Toast can have up to 3
Buttons allowing some feedback to be grabbed from the user. If an AlertDialog is
displayed without any Buttons the back key on the keyboard will need to be used to
remove it.

Here is a simple Alert with one Button, not all of the Buttons need to be used.

AlertDialog.Builder theAlert = new AlertDialog.Builder (this);
theAlert.setTitle ("Message") .setMessage ("Enter a reply");
theAlert.setNegativeButton ("Cancel", null);
theAlert.setPositiveButton ("OK", null);
theAlert.setNeutralButton ("No", null);

theAlert.show () ;

At this point the AlertDialog is diplayed but there is no code to pick up the Button
click actions. A Listener can be added to any or all of these Buttons.

Here is the adapted code to pick up a message from the ‘Cancel’ Button. Note that
the entire onClick listener method is within the .setNegativeButton method. Each
AlertDialog Button will need its own onClick() event.

theAlert.setNegativeButton ("Cancel",
new DialogInterface.OnClickListener () {
public void onClick(DialogInterface dialogInterface, int i) {
Toast.makeText (getApplicationContext (), "this
is a negative onClick", Toast.LENGTH LONG) .show () ;
}
})

A CheckBox can be linked to the same onClickListener and onClick method as a
Button but the event will fire when either is clicked so the code will have to cope with
this and work out if the click is a click to check or uncheck the CheckBox.

As long as the CheckBox controls have different names they can all be linked to the
onClickListener and handled within onClick(). These might be used to choose
several out of a list of options all of which can be applied.

import android.widget.CheckBox;

CheckBox ckMe;

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.main);
ckMe = (CheckBox)findViewById(R.id.ckBox) ;
ckMe.setOnClickListener (this) ;

}

public void onClick (View view)

{
if (((CheckBox) ckMe) .isChecked())

{
tOut.setText ("Check box is checked");

tOut.setText ("Check box is not checked");

if (bSimple.isPressed())
tOut.setText ("Message from Button");

RadioButtons need adding as part of a RadioGroup so that only 1 of the group can
be selected at once. Only the individual RadioButtons need their id setting in XML if
there is only 1 RadioGroup. This is easier to handle within the xml than using the
graphical designer.

<RadioGroup android:id="@+id/radioGroupl"”

android:layout width="wrap content"”

android:layout height="wrap content" android:layout weight="I1"
android:orientation="horizontal'>

<RadioButton android:layout height="wrap content"”
android:layout width="wrap content" android:text="Good"
android:checked="true" android:id="@+id/rbGood"
android:layout weight="50"></RadioButton>
<RadioButton android:layout width="wrap content"
android:layout height="wrap content" android:text="Bad"
android:layout weight="1"
android:id="@+id/rbBad'"></RadioButton>

</RadioGroup>

The RadioButtons work in the same way as CheckBoxes here the onClick() code
has been modified to handle both events:

rGood = (RadioButton) findViewById (R.id.rbGood) ;
rBad = (RadioButton) findViewById(R.id.rbBad) ;
rGood.setOnClickListener (this);
rBad.setOnClickListener (this) ;

These are handled within onClick like a Button or CheckBox

public void onClick (View view)

{
if (((CheckBox) ckMe).isChecked())

{
tOut.setText ("Check box is checked");
if (rGood.isChecked())
tOut.setText ("A good thing the box is checked");
if (rBad.isChecked())
tOut.setText ("A bad thing the box is checked");
}

}

The key pressed within an EditText can be picked up in a similar yet subtly different
arrangement. The EditText is picked up the key down action and this requires use -
of an onKeyListener.

A class can only extend one other class but luckily it can implement several
interfaces. An interface has some similarity to a class but must implemeent some
methods and cannot be instantiated on its own.

//additional listener
public class InputOutput extends Activity implements
View.OnClickListener, View.OnKeyListener {

EditText tIn;

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.main) ;
tIn = (EditText) findViewById (R.1id. tInput) ;
tIn.setOnKeyListener (this);

}

public boolean onKey(View v, int keyCode, KeyEvent event)
{
//
if ((event.getAction() == KeyEvent.ACTION DOWN)
&& (keyCode == KeyEvent.KEYCODE ENTER))

tOut.setText (tIn.getText ()) ;
return true;

}

return false;

}

The enter key needs to be picked up from the dummy keyboard on the virtual device,
not the keyboard on the computer used to host the virtual device.

The Spinner is a drop down list; the user can pick one item from the list. In this
Android 2.2 implementation it had to be set to Visibility = Visible in the XML to get the
program to load on the emulator.

Here a String Array will be used to fill the Spinner:

Spinner sList;
String [] items ={"one","two","three","four","five"};

No additional interfaces are required in the implements to access the Spinner data.
The ArrayAdapter is part of Android and is used to map the array of Strings (i tems)
to the Spinner.

sList = (Spinner)findvViewById(R.id.spList);
sList.setOnlItemSelectedListener (new
MyOnItemSelectedListener()):;
ArrayAdapter<String> aa=new ArrayAdapter<String> (this,
android.R.layout.simple spinner item,
items) ;
aa.setDropDownViewResource (
android.R.layout.simple spinner dropdown item);
sList.setAdapter (aa);

MyOnltemSelectedListener is a brand new class nested within the project class that
handles the selection event.

public class MyOnItemSelectedlListener implements
OnlItemSelectedListener {
public void onItemSelected (AdapterView<?> parent,View view,
int pos, long id) {
Toast.makeText (parent.getContext (), "The word is " +
parent.getltemAtPosition (pos) .toString(),
Toast.LENGTH LONG) .show () ;
}
public void onNothingSelected (AdapterView parent) {
// Do nothing - this method is required.

}

We can get the same effect by loading the Spin from the strings.xml file in the
res/values folder:

<resources>
<string name="hello'">Hello World, InputOutput!</string>
<string name="app name">Test Widgets</string>
<string name="nums prompt'">Choose a number</string>
<string-array name="nums'>
<item>one</item>
<item>two</item>
<item>three</item>
<item>four</item>
<item>five</item>
<item>six</item>
</string-array>
</resources>

The Android code then needs modifying as follows:

/*ArrayAdapter<String> aa=new ArrayAdapter<String>(this,
android.R.layout.simple spinner item,
items) ;*
ArrayAdapter<CharSequence> aa =
ArrayAdapter.createFromResource (this, R.array.nums,
android.R.layout.simple spinner item);

Generally it is better to load values such the array of words from the xml rather than
from the Java code. Modifying the xml is less technical so should be easier to set
up. The Java code can be left alone and the xml changed; different builds can then
be made to handle different language markets.

The /res folders can be used to load data many purposes. Here a String array
models a set of questions and answers.

<string-array name="quests'">

<item>"What is the capital of France?,Paris,Berlin,Moscow,1"</item>
<item>"What is the capital of Germany?,Paris,Berlin,Moscow,2"</item>
</string-array>

This can be picked up in the Java and assigned to a Java array

String []questions;

Resources res = getResources();

questions = res.getStringArray(R.array.quests);
gCount = 0;

The array can be split along the ‘,” token and the members placed in appropriate
controls.

if (gCount<questions.length)

{
String [] token = questions[gCount].split(",");
txtQuest.setText (token[0]) ;
txtAnsl.setText (token[1]
txtAns2.setText (token[2]
txtAns3.setText (token[2]
gCount ++;

)7
)7
) -

’

= ol B 10:20
U TiO S ——

Hello World, QuestionsActivity!

Load Questions

What is the capital of France?

Paris
Berlin
Berlin

We see Berlin twice and no Moscow because the last TextView should be set to
token[3].

